储成才

发布者:农学院发布时间:2024-08-19浏览次数:847



        姓        名:储成才

        技术职称:教授

        职       务:农学院教授、博士生导师,岭南实验室研究员

        联系电话:86-20-85280967

        邮        箱:ccchu@scau.edu.cn

        研究方向:植物养分高效机制解析及分子设计育种


研究领域:

        主要以水稻等为材料,重点研究植物对氮磷养分感知、转运与利用的分子机制,不同养分间互作关系,以及通过遗传学、计算生物学及多维组学等技术,克隆调控植物养分高效利用关键基因,鉴定其优异等位变异,并与育种家合作开展农作物品种的分子设计改良。

 

教育经历:

        1986年   安徽师范大学 学士学位

        1989年   河南师范大学/中国科学院植物研究所 硕士学位

        1996年   德国Martin-Luther大学 博士学位

 工作经历:

        1989-1993年  河南师范大学生物系 任教 (助教、讲师)

        1996-1998年  德国植物遗传与作物育种研究所 (IPK) 博士后

        1999-2021年  中国科学院遗传发育所 研究员/中国科学院大学 教授

        2021-             华南农业大学 教授/农学院院长

                               岭南现代农业科学与技术广东省实验室 研究员

 奖励荣誉:

1999年   中国科学院“百人计划”

2004年  首批新世纪百千万人才工程国家级人选

2006年  国务院批准享受政府特殊津贴专家

2008年  国家杰出青年科学基金

2016年   全国优秀科技工作者

2016年  中国侨界贡献奖

2016年  科技部国家创新人才推进计划重点领域创新团队

2017年  中组部、人社部“万人计划”领军人才

2017年 《功能基因组学》课程被评为中国科学院大学生命科学学院精品课程

2019年 《功能基因组学》课程被评为中国科学院大学现代农学院优秀课程

2019年 《功能基因组学》课程被评为中国科学院大学优秀课程

2019年    Web of Science 全球高被引科学家

2020年    Web of Science 全球高被引科学家

2021年    Web of Science 全球高被引科学家

2021年    中国科学院大学“魏桥国科”校长奖教

2022年   Web of Science全球高被引科学家

2022年  《分子设计育种》课程被评为中国科学院大学优秀课程

2022年   中国科学院2022年度优秀导师奖

2023年   Web of Science全球高被引科学家

2023年    荣获中国科学院大学领雁银奖——振翅奖

2024年   Web of Science全球高被引科学家

2024年    华南农业大学我最喜爱的研究生导师

2025年    广东省劳动模范



学术服务:

全国科学技术新词委员会委员

国家知识产权局中国专利审查技术专家

中国作物学会分子育种专业委员会副会长

中国生物工程学会生命科学支撑技术专业委员会委员

Committee member of International Society on Pre-Harvest Sprouting in Cereals

《中华科学技术大词典•生物学卷》副主编

《遗传》副主编

《作物学报》副主编

《激光生物学报》副主编

《农业生物技术学报》副主编

《植物学报》编委

Molecular Plant 编委

Plant Communications 编委

Rice 编委

Plant and Cell Physiology编委

Modern Agriculture 编委

Journal of Integrative Plant Biology 编委

Journal of Genetics and Genomics 编委

主要成就:

秉承“育种家的问题就是科学家的课题”的科研思路,将基础研究和应用实践紧密结合,在水稻营养高效利用及作物分子设计育种等基础及应用基础研究领域取得一系列原创性成果。克隆了控制水稻籼粳亚种间氮肥利用效率差异关键基因NRT1.1B;建立了硝酸盐信号从细胞膜受体感知到细胞核应答响应的主信号通路;揭示了硝酸盐信号通过调控氮磷应答基因实现氮磷营养平衡的分子机制;发现籼稻根系微环境的氮循环比粳稻更活跃,且籼稻型NRT1.1B基因在促进氮循环相关细菌在水稻根系富集、提高有机氮利用及土壤适应性等方面起重要作用;发现NRT1.1B是植物逆境激素ABA的细胞膜受体,并解析其完整信号转导通路,阐明了氮信号与逆境信号的感知与整合路径,从而赋予植物对复杂逆境的适应性。基于实验室研究成果培育出设计型水稻新品种,为“绿色超级稻”(少施化肥、少打农药、提高产量)的培育及其它作物的育种改良提供了成功范例。回国后在包Cell, Nature, Nature Genetics, Nature Biotechnology, Nature Plants, Nature Communications, Genome Research, PNAS, Plant Cell, Molecular Plant 等刊物发表通讯/共同通讯作者论文140多篇,总引用30650多次(Google Scholar 数据)h指数992019-2024连续6年入选Clarivate Analytics(科睿唯安)“全球高被引科学家”。多次应邀在Nature Plants, Trends in Plant Science, Current Opinion in Plant Biology, Molecular Plant等杂志撰写综述、趋势和评论;申请专利70多项,其中国际专利10项,与育种单位合作培育水稻新品种5个,其中秀水114和秀水134累积推广面积1400多万亩。

论文著作:

 I. 代表性论文 (蓝色为第三方评价)

1. Ma X#, Wang W#, Zhang J#, Jiang Z#, Xu C#, Zhu W, Shi B, Yang W, Su H, Wang X, Chen D, Wang Y, Wang J, Wang J, Liu X, Wang X, Huang X, Xie W, Cai Y, Xu K, Xin P, Liu L, Lü P, Wang Y, Chu J, Gong X,* Chu C,*and Hu B* (2025) NRT1.1B acts as an abscisic acid receptor in integrating compound environmental cues for plants.Cell.doi: 10.1016/j.cell.2025.07.027.

2.Xu F#, Tang J#, Wang S#, Cheng X#, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C*, and Chu C* (2022) Antagonistic control of rice seed dormancy by two bHLH transcription factors. Nat. Genet. 54: 1972-1982.

Highlight by Hideki Yoshida and Makoto Matsuoka (2022) Two bHLH transcription factors affect sprouting by regulating the level of ABA. Nat. Genet. 54: 1772-1773.

Spotlight by Ying Chen, Shiyong Song, and Peisong Hu (2023) Temperature-dependent regulation of seed dormancy. Mol. Plant. 16(3):500-502.

Highlighted by Yucheng Liu & Zhixi Tian (2023) Temperature driven antagonistic fate determination by two bHLH transcription factors: dormancy or germination. Sci. China - Life Sci. 66(5): 1208-1209.

3. Liu Y#, Wang H#, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B*, and Chu C* (2021) Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590: 600-605.【高被引论文】【热点论文】

Highlighted by Wei Li (2021) Adaptation to nitrogen. Nat. Genet. 53: 127.

Spotlighted by Bing Wang and Jiayang Li (2021) Rice geographic adaption to poor soil: novel insight in sustainable agriculture. Mol. Plant. 14: 369-371.

Featured by Alisdair Fernie (2021) Using landrace transcription factor alleles to increase yield in modern rice under low input agriculture. J. Plant Physiol. 258-259: 153362.

Commented by Xianran Li and Jianming Yu (2021) Retrofitting elites with ancestral alleles for sustainable agriculture. Sci. China - Life Sci. 64: 1029-1030.

Mini-reviewed by Fanmiao Wang, Hideki Yashida and Makoto Matsuoka (2021) Making the “Green Revolution” truly green: Improving crop nitrogen use efficiency. Plant Cell Physiol. 62: 942-947.

热点评述宣伟徐国华 (2021). 植物适应土壤氮素环境的基因选择以水稻为例植物学报. 56: 1-5.

Selected by F1000Prime by Jian Feng Ma, Jiming Jiang.

4. Fang J#*, Zhang F#, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang X, Zhang Y, Zhu X, Han B, Deng X*, and Chu C* (2019) Ef-cd locus shortens rice maturity duration without yield penalty. Proc. Natl. Acad. Sci. USA 116: 18717-18722.

Highlighted in in this issue (2019) Rice maturity time and yield. Proc. Natl. Acad. Sci. USA 116: 18149.

Spotlighted by Yang Yu and Qian Qian (2019) Rice breeding: A long noncoding locus with great potential. Mol. Plant 12: 1431-1433.

热点评述:张硕吴昌银 (2019) 长链非编码RNA基因Ef-cd调控水稻早熟与稳产植物学报. 54: 550-553.

5. Zhang J#, Liu Y-X#, Zhang N#, Hu B#, Jin T#, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C*, and Bai Y* (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37: 676-684.【高被引论文】【热点论文】

Cover story.

热点评述:王孝林王二涛 (2019)  根际微生物促进水稻氮利用的机制植物学报. 54: 285-287.

6. Hu B#*, Jiang Z#, Wang W#, Qiu Y#, Zhang Z, Liu Y, Gao X, Liu L, Qian Y, Huang X, Yu F, Li A, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, and Chu C* (2019) Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants. Nat. Plants 5: 401-413.【高被引论文】【热点论文】

Featured by César Poza-Carrión & Javier Paz-Ares (2019) When nitrate and phosphate sensors meet. Nat. Plants 5: 339–340.

Selected in F1000Prime by Prof. Jian Feng Ma. doi: 10.3410/f.735399180.793560575, and Prof. Shuhua Yang on 29 May 2019; doi: 10.3410/f.735399180.793560581.

7. Wang W#, Hu B#, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang Y, Zhang L, Li L, Sodmergen, Jing H, Li J, and Chu C(2018) Expression of the nitrate transporter OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30: 638-651.【高被引论文】

Commented by Jennifer Mach (2018) The real yield deal? nitrate transporter expression boosts yield and accelerates maturation. Plant Cell 30: 520-521.

Highlighted in Science Daily on February 23, 2018 by Jennifer Mach: New approach to improve nitrogen use, enhance yield, and promote flowering in rice.

Selected by F1000Prime doi: 10.3410/f.732773314.793543251.

8. Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R*, and Chu C* (2016) The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication. Mol. Plant 9: 975-985.

Cover Story.

Featured by Xuehui Huang (2016) From genetic mapping to molecular breeding: Genomics have paved the highwayMol. Plant 9: 959-960.

9. Che R#, Tong H#, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M*, and Chu C* (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2: 15195.【高被引论文】

Featured by Hirokazu Tsukaya (2015) Yield increase: GRFs provide the key. Nat. Plants 2: 15210.

热点评述:刘玲童王台 (2016) miR396-GRF模块水稻分子育种的新资源植物学报. 51: 148-151. 

10. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, and Chu C* (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47: 834-838.【高被引论文】

Featured by Dai-Yin Chao & Hong-Xuan Lin (2015) Nitrogen-use efficiency: Transport solution in rice variations. Nat. Plants 1: 15096.

Highlighted by Chen ZC & Ma JF (2015) Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B. J. Genet. Genomics 42: 463-465

Highlighted by Duan D & Zhang H (2015) A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Sci. China Life Sci. 58: 827-828.

Selected for F1000Prime. doi: 10.3410/f.725540326.793508312.

11. Liang C#, Wang Y#, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, and Chu C* (2014) OsNAP connects abscisic acid and leaf senescence by fine tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. U S A 111: 10013-10018.【高被引论文】 

Selected for F1000Prime. doi: 10.3410/f.718460121.793520007.

II.通讯/共同通讯作者论文

1.Ma X#, Wang W#, Zhang J#, Jiang Z#, Xu C#, Zhu W, Shi B, Yang W, Su H, Wang X, Chen D, Wang Y, Wang J, Wang J, Liu X, Wang X, Huang X, Xie W, Cai Y, Xu K, Xin P, Liu L, Lü P, Wang Y, Chu J, Gong X,* Chu C,*and Hu B* (2025) NRT1.1B acts as an abscisic acid receptor in integrating compound environmental cues for plants.Cell.Doi: 10.1016/j.cell.2025.07.027.

2.Liu Y#,*, Li W#,Wang X#, Li Y, Zhu W, Chen Z, Liu X, Liu X, Wang W, Xue C, Cao S, Gao C, Lü P, Xie X, Hu B and Chu C*(2025) Fine-tuningOsTCP19 offers broad adaptation scenarios for nitrogen-use efficiency improvement in rice.Plant Physiology. (accepted)

3.Liu Y#, Wang Y#, Yuan H, Gao X, Luo X, Liu R, Lei S, Hao M, Wang Z, Yu F, Wang X, Hu B*,Chu C*, and Zhang L.*(2025) Boosting selenium accumulation in rice grains by enhancing NRT1.1B-mediated MeSeCys translocation.Plant Commun.doi: 10.1016/j.xplc.2025.101412.

4.Zhang J#, Liu F#, Kuang Y, Luo M, Chu C,*and Xu F*. (2025) The fourth exon confers antagonistic activity ofOsMFT1andOsMFT2 in rice pre-harvest sprouting. Crop J. 13(1), 135-144.

5.Zhang J#, Wang B#, Xu H#, Liu W#, Yu J#, Wang Q#, Yu H#, Wei JW#, Dai R, Zhou J, He Y, Zou D, Yang J, Ban X, Hu Q, Meng X, Liu YX, Wang B, Hu B, Wang M, Xin P, Chu J, Li C, Garrido-Oter R, Yu P, van Dijk ADJ, Dong L, Bouwmeester H, Gao S*, Huang A*,Chu C*, Li J*, Bai Y*. (2025) Root microbiota regulates tiller number in rice.Cell.188(12): 3152-3166.

Highlighted by Yujing Miao, Ertao Wang, Ran Wang (2025) Root microbiota shapes rice architecture via SL signaling.Sci. China Life Sci.doi: 10.1007/s11427-025-2992-6.

Highlighted by Hugo R. Barajas Derek S. Lundberg (2024) Root bacteria hack another plant hormone and affect yield.Cell Host & Microbe 33(6): 934-936.

Featured by Esteban Veliz and Venkatesan Sundaresan(2025) Root bacteria fine-tune tillering in rice through phytohormone interference and mimicry.Molecular Plant18(8):1256-1258.

6.Zhang G, Wang H, Ren X, Xiao Y, Liu D, Meng W, Qiu Y, Hu B, Xie Q, Chu C*,andTong H.(2024)Brassinosteroid-dependent phosphorylation of PHOSPHATE STARVATION RESPONSE2 reduces its DNA-binding ability in rice.Plant Cell. 36(6): 2253-2271. 

Highlighted inIn Brief by Howe Vicky (2024) More Pi, anyone? Interplay between brassinosteroid signaling and the phosphate starvation response.Plant Cell. 36(6): 2059-2060.

7.Yan Y#, Zhang Z#, Sun H, Liu X, Xie J, Qiu Y, Chai T*,Chu C*, and Hu B* (2023)Nitrate confers rice adaptation to high ammonium by suppressing its uptake but promoting its assimilation.Mol. Plant.16: 1871-1874.

8.Chen Z#, Bu Q#, Liu G#, Wang M, Wang H, Liu H, Li X, Li H, Fang J, Liang Y, Teng Z, Kang S, Yu H, Cheng Z, Xue Y, Liang C, Tang J*, Li J*, andChu C* (2023) Genomic Decoding of Breeding History to Guide Breeding-by-Design in Rice.Natl. Sci. Rev.10: nwad029.

9.Jin J*, Xiong L, Gray JE, Hu B, andChu C* (2023)Two awn development-related peptides, GAD1 and OsEPFL2, promote seed dispersal and germination in rice.Mol. Plant16(3): 485-488.

10.Wang Y#, Teng Z#, Li H#, Wang W, Xu F, Sun K, Chu J, Qian Y, Loake GJ,Chu C*, and Tang J* (2022) An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger cell death in rice. Plant Commun.4(2): 100459.

11.Xu F#, Tang J#, Wang S#, Cheng X#, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C*, andChu C* (2022) Antagonistic control of rice seed dormancy by two bHLH transcription factors.Nat. Genet. 54: 1972-1982.

Featured inNature Genetics byHideki Yoshida andMakoto Matsuoka (2022) Two bHLH transcription factors affect sprouting by regulating the level of ABA.Nature Genetics. 54: 1772-1773.

Spotlight inMolecular Plant by Ying Chen, Shiyong Song, and Peisong Hu (2022) Temperature-dependent regulation of seed dormancy.Molecular Plant. 16(3): 500-502.

Highlighted inScience China Life Science by Yucheng Liu & Zhixi Tian (2023) Temperature driven antagonistic fate determination by two bHLH transcription factors: dormancy or germination.Science China Life Science66(5): 1208-1209.

12.Abid A, Wei X, Meng Z, Wang Y, Ye L, Wang Y, He H, Zhou Q, Li Y, Wang P, Li X, Yan L, Malik W, Guo S,Chu C*, Zhang R* and Liang C* (2022) Increasing Floral Visitation and Hybrid Seed Yield Mediated by Beauty MarkinGossypium hirsutum.Plant Biotechnol. J.20(7): 1274-1284.

13.Liu D#, Zhao H#, Xiao Y, Zhang G, Cao S, Yin W, Qian Y, Yin Y, Zhang J, Chen S,Chu C*, Tong H* (2022) A cryptic inhibitor of cytokinin phosphorelay controls grain size.Mol. Plant. 15(2): 293-307.[高被引论文]

Spotlighted by Tomáš Werner and Thomas Schmülling (2022). Moonlighting PPKL1 reveals a role of cytokinin in regulating rice grain size.Molecular Plant. 15(2): 216-218.

Selected by F1000Prime by Zhaojun Ding, doi: 10.3410/f.740870116.793591337(Exceptional).

14.Che R, Hu B, Wang W, Xiao Y, Liu D, Yin W, Tong H*,Chu C*(2022)POLLEN STERILITY, a Novel Suppressor of Cell Division, is Required for Timely Tapetal Programmed Cell Death in Rice.Sci. China – Life Sci. 65(6): 1235-1247.

15.Tian X, Xia X, Xu D, Liu Y,Xie L, Hassan MA, Song J, Li F, Wang D, Zhang Y, Hao Y,Li G,Chu C*, He Z*, Cao S*(2022)Rht24b, an ancient variation ofTaGA2ox-A9, reduces plant height without yield penalty in wheat.New Phytol.233(2): 738-750.

16.Liu D#, Yu Z#, Zhang G#, Yin W, Li L, Niu M, Meng W, Zhang X, Dong N, Liu J, Yang Z, Wang S*,Chu C*, Tong H*(2021)Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice.Plant Physiol. 187(4): 2563-2576.

17.Sun C*#, Zhang K#, Zhou Y#, Xiang L, He C, Zhong C, Li K, Wang Q#, Yang C#, Wang Q, Chen C, Chen D, Wang Y, Liu C, Yang B, Wu H, Chen X, Li W, Wang J, Xu P, Wang P, Fang J,Chu C*, Deng X* (2021) Dual function of clock component OsLHY sets critical day length for photoperiodic flowering in rice.Plant Biotechnol. J.19: 1644-1657. [高被引论文]

18.Li Q, Xu F, Chen Z, Teng Z, Sun K, Li X, Yu J, Zhang G, Liang Y, Huang X, Du L, Qian Y, Wang Y,Chu C*, Tang J* (2021) Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation.Nat. Plants.7: 1108–1118.

19.Yu Y#, Yu J#, Wang Q#, Wang J, Zhao G, Wu H, Zhu Y,Chu C*, Fang J*(2021)Overexpression of the riceORANGE geneOsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice.Plant Sci.310: 110962.

20.Wang X#, Feng C#, Tian L#, Hou C, Tian W, Hu B, Zhang Q, Ren Z, Niu Q, Song J, Kong D, Liu L, He Y, Ma L, Chu C*, Luan S*, Li L* (2021) A transceptor-channel complex couples nitrate sensing to calcium signaling inArabidopsis.Mol. Plant. 14(5): 774-786.[高被引论文]

Spotlighted by Cheng-Wu Liu* and Shutang Tan (2021) Nitrate Signaling: A Translator between Nitrate Perception and Calcium Signaling.Molecular Plant14(5): 774-786.

Selected by F1000Prime byGabriel Krouk and Alaeddine Safi. doi: 10.3410/f.739577783.793589636. (Very good)

21.Liu Y#, Wang H#, Jiang Z, Wang W, Xu R, Wang Q, Zhang Z, Li A, Liang Y, Ou S, Liu X, Cao S, Tong H, Wang Y, Zhou F, Liao H, Hu B*, andChu C* (2021) Genomic basis of geographical adaptation to soil nitrogen in rice.Nature 590: 600-605.[高被引论文] [热点论文]

Highlighted by Wei Li (2021) Adaptation to Nitrogen.Nature Genetics. 53(2): 127.

Spotlighted by Bing Wang and Jiayang Li (2021) Rice Geographic Adaption to Poor Soil: Novel Insight in Sustainable Agriculture. Molecular Plant. 14: 369-371.

Featured by Alisdair Fernie (2021)Using landrace transcription factor alleles to increase yield in modern rice under low input agriculture.Journal of Plant Physiology.258-259: 153362.

Commented by Xianran Li and Jianming Yu (2021) Retrofitting elites with ancestral alleles for sustainable agriculture.Science China Life Science. 64(6):1029-1030.

Mini-reviewed by Fanmiao Wang, Hideki Yashida and Makoto Matsuoka (2021)Making the “Green Revolution” truly green: improving crop nitrogen use efficiency.Plant Cell and Physiology. 62(6): 942-947.

热点评述:宣伟,徐国华.植物适应土壤氮素环境的基因选择:以水稻为例.植物学报. 56(1)(2021), 1-5.

Selected by F1000Prime by Jian Feng Ma, Jiming Jiang.

22.Zhang Z#, Li Z#, Wang W, Jiang Z, Guo L, Wang X, Qian Y, Huang X, Liu Y, Liu X, Qiu Y, Li A, Yan Y, Xie J, Kopriva S, Li L, Kong F, Li B, Wang Y, Hu B*, andChu C* (2021)Modulation of Nitrate-Induced Phosphate Response by the MYB Transcription Factor RLI1/HINGE1 in the Nucleus.Mol.Plant14(3): 517-529.

23.Qu M, Jemaa E, Xu J, Ablat G, Perveen S, Wang H, Chen K, Yang Z, Chen G*,Chu C*, and Zhu X* (2020)Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions.Plant J. 104(5): 1334-1347.

24.Xu Y#, Zhang L#, Ou S, Wang R, Wang Y,Chu C*, and Yao S* (2020) Natural variations ofSLG1 confer high-temperature tolerance inindicarice.Nat. Commun.11: 5441.

25.Xiao Y#, Zhang G#, Liu D, Niu M, Tong H*, andChu C*(2020) GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice.Plant J.102:1187-1201.

26.Wang Y#, Liang C#, Wu S, Jian G, Zhang X, Zhang H, Tang J, Li J, Jiao G, Li F, andChu C* (2020) Vascular-specific expression ofGastrodia antifungal protein gene significantly enhanced cottonVerticillium wilt resistance.Plant Biotechnol. J.18(7): 1498-1500.

27.Xu F, Tang J, Gao S, Cheng X, Du L, Fang J andChu C* (2019) Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling.Plant J.100(5):1036-1051.

28.Tang J, Wang Y, Yin W, Dong G, Sun K, Teng Z, Wu X, Wang S, Qian Y, Pan X, Qian Q*, andChu C* (2019) Mutation of a nucleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight.Plant Physiol.181(3): 1295-1313.

29.Fang J#*, Zhang F#, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang X, Zhang Y, Zhu X, Han B, Deng X*, andChu C* (2019)Ef-cd locus shortens rice maturity duration without yield penalty.Proc. Natl. Acad. Sci. USA116(37): 18717-18722.

Highlighted inin this issue (2019) Rice maturity time and yield.Proc. Natl. Acad. Sci. U S A 116(37): 18149.

Spotlighted by Yang Yu and Qian Qian (2019) Rice breeding: A long noncoding locus with great potential.Molecular Plant 12(11): 1431-1433.

热点评述:张硕,吴昌银(2019).长链非编码RNA基因Ef-cd调控水稻早熟与稳产.植物学报. 54(5), 550-553.

30.Gao S, Xiao Y, Xu F, Gao X, Cao S, Zhang F, Wang G, Sanders D, andChu C* (2019) Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice.New Phytol.224(1): 202-215.

31.Liu C, Schläppi M, Mao B, Wang W, Wang A,Chu C* (2019) The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage.Plant Biotechnol. J.17: 1834-1849.

32.Zhang L#*, Hu B#, Deng K, Gao X, Sun G, Zhang Z, Li P, Wang W, Li H, Li L, Yu F, Li Y,Chu C* (2019) NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation.Plant Biotechnol. J.17(6): 1058-1068.

33.Zhang J#, Liu Y-X#, Zhang N#, Hu B#, Jin T#, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R,Chu C*, and Bai Y* (2019)NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice.Nat. Biotechnol. 37: 676-684.[高被引论文] [热点论文]

Cover story.

Featured byXiaolin Wang and Ertao Wang (2019) NRT1.1B connects root microbiota and nitrogen use in rice.Chinese Bulletin of Botany 54(3): 285-287.

34.Hu B#*, Jiang Z#, Wang W#, Qiu Y#, Zhang Z, Liu Y, Gao X, Liu L, Qian Y, Huang X, Yu F, Li A, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, andChu C* (2019) Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signaling networks in plants.Nat. Plants5: 401-413.[高被引论文] [热点论文]

Featured byCésar Poza-Carrión & Javier Paz-Ares (2019) When nitrate and phosphate sensors meet.Nat. Plants5, 339–340.

Selected in F1000Prime by Prof. Jian Feng Ma. Doi: 10.3410/f.735399180.793560575, and Prof. Shuhua Yang on 29 May 2019; doi: 10.3410/f.735399180.793560581.

35.Xiao Y, Liu D, Zhang G, Gao S, Liu L, Xu F, Che R, Tong H*,Chu C* (2019)Big Grain3,encoding a purine permease, regulates grain size via modulating cytokinin transport in rice.J. Integr. Plant Biol.61(5): 581-597.

36.Hamdani S, Wang H, Zheng G, Perveen SH, Qu M, Khan N, Khan W, Jiang J, Li M, Liu X, Zhu X, Govindjee,Chu C*, Zhu X*(2019) Genome-wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II.Physiol. Plant. 166: 105-119.

37.Wang M#, Li W#, Fang C#, Xu F#, Liu Y#, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SC*,Chu C* & Tian Z* (2018)Parallel selection on a dormancy gene during domestication of crops from multiple families.Nat. Genet.50(10): 1435-1441.

Featured by Rendón-Anaya M and Herrera-Estrella A (2018)The advantage of parallel selection of domestication genes to accelerate crop improvement.Genome Biol.19(1): 147.

Highlighted by Xin Wei and Xuehui Huang (2018) Identification of a seed dormancy gene in soybean sheds light on crop domestication.Science China-Life Sciences 61(11): 1439-1441.

38.Liu C#, Ou S#, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi MR, Zhao B, Xiao G, Wang X* andChu C* (2018)Early selection of bZIP73 facilitated adaptation ofjaponica rice to cold climates.Nat.Commun. 9(1): 3302.[高被引论文]

39.Du L#, Xu F#, Fang J#, Gao S, Tang J, Fang S, Wang H, Tong H, Cao S, Zhang F, Chu J, Wang G,Chu C* (2018) Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice.Plant J.95(3): 545-556.

40.Zhang J#, Zhang N#, Liu YX#, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Zhang P, Jin T*,Chu C*, Bai Y* (2018) Root microbiota shift in rice correlates with resident time in the field and developmental stage.Sci. China - Life Sci.61(6): 613-621.

Cover Story.

41.Wang W#, Hu B#, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang Y, Zhang L, Li L, Sodmergen, Jing H, Li J, andChu C* (2018) Expression of the nitrate transporterOsNRT1.1A/OsNPF6.3confers high yield and early maturation in rice.Plant Cell 30(3): 638-651. [高被引论文]

Featured by Jennifer Mach (2018) The Real Yield Deal? Nitrate Transporter Expression Boosts Yield and Accelerates Maturation.Plant Cell30(3): 520-521.

Highlighted inScience Daily on February 23, 2018 by Jennifer Mach: New approach to improve nitrogen use, enhance yield, and promote flowering in rice.

Selected by F1000Prime doi: 10.3410/f.732773314.793543251.

42.Xiao Y, Liu D, Zhang G, Tong H*,Chu C* (2017) Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice.Front. Plant Sci.8: 1698.

43.Wang H#, Vieira FG#, Crawford JE,Chu C*, and Nielsen R* (2017) Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice.GenomeRes.27: 1029-1038.

Cover Story.

Highlighted inAsian ScientistMagazine on May 2, 2017: Apparently, Asian Wild Rice Isn’t So Wild Anymore.

44.Zhang B#, Zhang L#, Li F#, Zhang D, Liu X, Wang H, Xu Z,Chu C*, Zhou Y* (2017) Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase.Nat. Plants3: 17017.

Featured by Scheller HV (2017) Plant cell wall: Never too much acetate.Nature Plants 3: 17024.

45.Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J,Chu C*, Yang J*, and Bu Q* (2017) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing.J. Genet. Genomics44(3): 175-178.

46.Liang C#, Li A#, Yu H#, Li W, Liang C, Guo S, Zhang R*,Chu C* (2017) Melatonin regulates root architecture by modulating auxin response in rice.Front. Plant Sci.8: 134.

47.Tong H andChu C* (2017) Physiological analysis of brassinosteroid responses and sensitivity in rice.Methods Mol. Biol.1564: 23-29.

48.Li H, Hu B, Wang W, Zhang Z, Liang Y, Gao X, Li P, Liu Y, Zhang L andChu C* (2016)Identification of MicroRNAs in Rice Root in Response to Nitrate and Ammonium.J. Genet. Genomics.43: 651-661.

49.Wang Y#, Liang C#, Wu S#, Zhang X#, Tang J, Jian G, Jiao G, Li F*,Chu C* (2016) Significant Improvement of Cotton Verticillium Wilt Resistance by Manipulating the Expression ofGastrodiaAntifungal Proteins.Mol. Plant9(10): 1436-1439.

50.Wang H, Xu X, Vieira FG, Xiao Y, Li Z, Wang J, Nielsen R*, andChu C* (2016) The power of inbreeding: NGS based GWAS of rice reveals convergent evolution during rice domestication.Mol. Plant9(7): 975-985.

Cover Story.

Featured by Xuehui Huang (2016)From Genetic Mapping to Molecular Breeding: Genomics Have Paved the Highway.Molecular Plant9(7): 959-960.

51.Gao S, Fang J, Xu F, Wang W, andChu C* (2016) Rice HOX12 regulates panicle exsertion by directly modulating the expression ofELONGATED UPPERMOST INTERNODE1.Plant Cell 38(3): 680-695.

Highlighted withScience News onApril 1, 2016 by Jennifer A. Lockhart:Feeding the World: Uncovering a Key Regulator of Flower Head Development in Rice.

52.Che R#, Tong H#, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M*, andChu C* (2015) Control of grain size and rice yield byGL2-mediated brassinosteroid responses.Nat. Plants2: 15195. [高被引论文]

Featured by Hirokazu Tsukaya (2015) Yield Increase: GRFs Provide the Key.Nature Plants 2: 15210.

Highlighted by Lingtong Liu and Tai Wang (2016):miR396-GRF Modules: A New Prospective on Rice Molecular Breeding.Chinese Bulletin of Botany 51: 148-151.

53.Liu L#, Tong H#, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J*, andChu C*(2015) Activation ofBig Grain1 significantly improves grain size by regulating auxin transport in rice.Proc. Natl. Acad. Sci. U S A 112(35): 11102-11107. [高被引论文]

54.Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, andChu C* (2015) Variation inNRT1.1B contributes to nitrate-use divergence between rice subspecies.Nat. Genet. 47(7): 834-838.[高被引论文]

Featured by Dai-Yin Chao & Hong-Xuan Lin (2015) Nitrogen-use efficiency: Transport solution in rice variations.Nature Plants 1: 15096.

Highlighted by Chen ZC & Ma JF (2015)Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B. J. Genet. Genomics.42(9): 463-465

Highlighted by Duan D & Zhang H (2015) A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Sci. China Life Sci. 58(8): 827-828.

Selected for F1000 Prime. doi: 10.3410/f.725540326.793508312.

55.Xu F#, Fang J#, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J, Wang G, andChu C* (2015) Variations inCYP78A13 coding region influence grain size and yield in rice.Plant Cell Environ. 38(4): 800-811.

56.Hu B, Wang W, Deng K, Li H, Zhang Z, Zhang L, andChu C* (2015) microRNA399 is involved in multiple nutrient responses in rice.Front. Plant Sci. 6: 188.

57.Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, andChu C* (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice.J. Pineal Res. 59(1): 91-101.

58.Tong H#, Xiao Y#, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q,andChu C* (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.Plant Cell 26(11): 4376-4393.[高被引论文]

FeaturedbyNancy R. Hofmann (2015).Taking Hormone Crosstalk to a New Level: Brassinosteroids Regulate Gibberellin Biosynthesis.Plant Cell 25(8):2081.

59.Liang C#, Wang Y#, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, andChu C* (2014) OsNAP connects abscisic acid and leaf senescence by fine tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice.Proc. Natl. Acad. Sci. U S A 111(27): 10013-10018.[高被引论文]

Selected for F1000 Prime. doi: 10.3410/f.718460121.793520007.

60.Gao S#, Fang J#, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, andChu C* (2014) CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation.Plant Physiol.165(3): 1035-1046.

61.Zhang L#*, Hu B#, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y,andChu C* (2014) OsPT2, a phosphate transporter, is involved in active uptake of selenite in rice.New Phytol. 201(4): 1183-1191. [高被引论文]

62.Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y,Chu C*, and Wang X* (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice.Plant Mol. Biol. 84(1-2): 19-36.[高被引论文]

Selected for F1000 Prime. doi: 10.3410/f.718060410.793520018.

63.Liu Y, Fang J, Xu F, Chu J, Yan C, Schläppi M, Wang Y, andChu C* (2014) Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: A comparison of dormant and non-dormant rice cultivars.J. Genet. Genomics 41(6): 327-338.

64.Guo X#, Hou X#, Fang J#, Wei P, Xu B, Chen M, Feng Y, andChu C* (2013) The riceGERMINATION DEFECTIVE1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism.Plant J. 75(3): 403-416.

65.Sun C#, Fang J#, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, andChu C* (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition atMADS50 and RFT1, and promotes flowering in rice.Plant Cell 24(8): 3235-3247.

66.Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, andChu C* (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice.Plant Cell 24(6): 2562–2577. [高被引论文]

67.Wu HJ#, Zhang Z#, Wang JY#, Oh DH#, Dassanayake M#, Liu B#, Huang Q#, Sun HX, Xia R, Wu Y, Wang Y, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J*,Chu C*, Chen SY*, Bohnert HJ, Zhu J-K*, Wang XJ* and Xie Q* (2012) Insights into salt tolerance from the genome ofThellungiella salsuginea.Proc. Natl. Acad. Sci. U S A 109(30): 12219- 12224. [高被引论文]

Cover story.

Highlighted with Research Highlights inNature Middle East on July 12, 2012 by Moheb Costandi: “Genome sequencing reveals a plant's adaptation to extreme conditions.”

68.Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T,Chu C*,and Li C* (2012) Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.PLoS ONE7(11): e50089.

69.Lin A#, Wang Y#, Tang J#, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ,andChu C* (2012) Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide induced leaf cell death in rice.Plant Physiol. 158: 451-464. [高被引论文]

70.Wang H, Fang J, Liang C, He M, Li Q,andChu C* (2011) Computation-assisted SiteFinding-PCR for isolating flanking sequence tags in rice.BioTechniques51: 421-423.

71.Li C, Wang Y, Liu L, Hu Y, Zhang F, Sodmergen, Wang G, Schläppi MR, andChu C* (2011) A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet. 7(7): e1002196.

72.Tang J#, Zhu X#, Wang Y, Liu L, Xu B, Li F, Fang J, andChu C* (2011) Semidominant mutations in the CC-NB-LRR-type R gene,NLS1, lead to constitutive activation of defense responses in rice.Plant J. 66: 996-1007.

73.Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, andChu C* (2011)LEAF TIP NECROSIS1 plays a pivotal role in regulation of multiple phosphate starvation responses in rice.Plant Physiol. 156: 1101-1115.

74.Sun C#, Liu L#, Tang J, Lin A, Zhang F, Fang J, Zhang G*,andChu C*(2011)RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice.J. Genet. Genomics38(1): 29-37.

75.Chai C#, Fang J#, Liu Y, Tong H, Gong Y, Wang Y, Liu M, Wang Y, Qian Q, Cheng Z, andChu C* (2011)ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice.Plant Mol. Biol. 75(3): 211-221.

76.Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, andChu C* (2010) RiceDENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.Cell Res. 20: 838-849.

77.Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, andChu C* (2009) DWARF AND LOW-TILLERING, a new member of GRAS family, plays positive roles in brassinosteroid signaling in rice.Plant J.58: 803-816.

78.Ma Y, Liu L, Zhu C, Sun C, Xu B, Fang F, Tang J, Luo A, Cao S, Li G, Qian Q, Xue Y, andChu C* (2009) Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system.J. Genet. Genomics 36(5): 267-276.

79.Guo X, Wu Y, Wang Y, andChu C* (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses.Planta 230: 227-238.

80.Yang Z, Wu Y, Li Y, Ling HQ, andChu C* (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice.Plant Mol. Biol.70(1-2): 219-229.

81.Wang Q, Guan Y, Wu Y, Chen H, Chen F, andChu C* (2008) Overexpression of a riceOsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice.Plant Mol. Biol. 67: 589-602.

82.Fang J#, Chai C#, Qian Q#, Li C, Tang J, Sun L, Huang Z, Guo X,Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, andChu C* (2008)Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice.Plant J.54: 177-189.

83.Bai X, Wang Q, andChu C* (2008) Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter.Transgenic Res. 17: 1035-1043.

84.Liu X, Bai X, Wang X,andChu C*(2007) OsWRKY71, a rice transcription factor, is involved in rice defense response.J. Plant Physiol.164: 969-979.

85.Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, Liu C, Bi YP, Qian Q, Cheng ZK,Chu C*, and Cao X* (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice.Plant Cell 19: 9-22 (*Corresponding author).

Featured inCell by Priya Prakash Budde (2007) Connecting the Dots between Histone Methylation and DNA Methylation.128(4): 633.

86.Luo A#, Qian Q#,Ying H, Liu X,Yin C, Lan Y, Tang J,Tang Z, Cao S, Wang X, Xia K,Fu X, Luo D*,andChu C* (2006)EUI1, encoding a putative cytochrome P450 monooxygenase, regulates the internode elongation by modulating GA responses in rice.Plant Cell Physiol. 47: 181-191.

87.Wu Y, Wang Q, Ma Y,andChu C* (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method.Plant Sci.168: 847-853.

88.Luo A, Liu L, Tang Z, Bai X, Cao S,andChu C* (2005) Down-regulation ofOsGRF1 gene in ricerhd1mutant results in reduced heading date.J. Integr. Plant Biol.47:745-752.

89.Liu X, Bai X, Qian Q, Wang X, Chen M, andChu C* (2005) OsWRKY03, a rice transcription activator that functions in defense signaling pathway upstream ofOsNPR1.Cell Res.15: 593-603.

90.Si L, Cao S,andChu C* (2003) Isolation of a 1195 bp 5’-flanking region of rice cytosolic fructose-1,6-bisphosphatase and analysis of its expression in transgenic rice.Acta Bot. Sin. 45: 359-364.

91.Si L,Wang L,Cao S, andChu C* (2002) Deletion of a 93 bp 5’ flanking region of rice cytosolic fructose-1,6-bisphosphatase completely altered its expression pattern.Acta Bot. Sin. 44: 1339-1345.

II.应邀撰写综述与评论

92.Guan C#, Zhang D#, and Chu C*(2025) The interplay of light and nitrogen in plant growth and development.Crop J.13: 641-655.

93.Sun H and Chu C* (2025) Novel insights into strigolactone perception.Trends Plant Sci.30(6): 588-590.

94.Yin W, Dong N, Lu Z, Zhou W, Chu C*, and Tong H* (2025)Understanding brassinosteroid-centric phytohormone interactions for crop improvement.J. Integr. Plant Biol.67(3): 563-581.

95.Liu X, Huang K, and Chu C* (2025) The genetic basis of nitrogen-dependent root system architecture in plants.Front. Agricult. Sci. Eng.12(1): 3-15.

96.Zhang Y*, Wang N, and Chu C* (2025) Optimizing plant growth in suboptimal environments: Deciphering the TOR-mediated root plasticity.Innovation. 6(2): 100762.

97.Liu X, Huang K, and Chu C* (2024)reduced internode 1 shortens internode length while increasing soybean yield.Plant Commun.5(2): 100781.

98.Yang Y,Chu C, Qian Q, Tong H (2024) Leveraging Brassinosteroid Towards Next Green Revolution.Trends Plant in Science.29(1):86-98.

99.Sun H, Wang H, andChu C*(2024) Strigolactone regulates nitrogen-phosphorus balance in rice.Sci. China - Life Sci. 67(2):428-430.

100.Tong H* andChu C* (2023) Coordinating gibberellin and brassinosteroid signaling beyond Green Revolution. J. Genet. Genomics.50(7): 459-461.

101.Zhang G, Liu Y, Xie Q, Tong H*, and Chu C* (2023) Crosstalk between brassinosteroid signaling and variable nutrient environments.Sci. China - Life Sci. 66(6): 1231-1244.

102.Liu Y andChu C* (2023) Improving maize seed protein content and nitrogen-use efficiency by a teosinte asparagine synthetase.Mol. Plant.16(3): 497-499.

103.Hu B*, Wang W, Chen J, Liu Y andChu C* (2023) Genetic improvements toward nitrogen-use efficiency in rice: lessons and perspectives. Mol. Plant.16(1): 64-74. [高被引论文]

104.Wang W, Zhang D, andChu C* (2023) OsDREB1C, an integrator for photosynthesis, nitrogen use efficiency, and early flowering.Sci. China - Life Sci. 66(1): 191-193.

105.Ma B, Ma T, Xian W, Hu B, andChu C* (2023) Interplay between ethylene and nitrogen nutrition: how ethylene orchestrates nitrogen responses in plants.J. Integr. Plant Biol. 65(2): 399-407.

106.Liu Y, Hu B*, andChu C* (2022) Toward improving nitrogen-use efficiency in rice: utilization, coordination, and availability.Curr. Opin. Plant Biol. 71: 102327.

107.Zhang L* and Chu C* (2022) Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice.Rice.15 (1): 30.

108.Liu X, Hu B, Chu C* (2022) Nitrogen assimilation in plants: Current status and future prospects.J. Genet. Genomics. 49(5): 394-404.

109.Chu C(2021)Editorial Feature: Meet the PCP Editor - Chengcai Chu.Plant Cell Physiol. 62(6): 923-925.

110.Xu Y,Chu C*, and Yao S* (2021)The impact of high-temperature stress on rice: Challenges and solutions.Crop J. 9: 963-976. [高被引论文]

111.Wang W, Zhang Z, Li A, andChu C* (2021) Post-translational modifications: regulation of nitrogen utilization and signaling.Plant Cell Physiol.62(4): 543-552.(Invited Review)

112.Li G, Tang J, Zheng J*, andChu C* (2021) Exploration of rice yield potential: Decoding agronomic and physiological traits.Crop J. 9(3): 577-589.

113.Li A, Hu B, andChu C* (2021)Epigenetic regulation of nitrogen and phosphorus responses in plants. J. Plant Physiol.258-259: 153363.(Invited Review)

114.Gao S and Chu C* (2020)Gibberellin metabolism and signalling: targets for improving agronomic performance of crops.Plant Cell Physiol.61(11): 1902-1911.(Invited Review)

Cover story.

115.Tang J* andChu C* (2020) Strigolactone signaling: Repressor proteins are transcription factors.Trends Plant Sci. 25(10): 960-963. (Invited Review)

116.Wang W, Hu B, Li A, andChu C* (2020) NRT1.1s in plants: functions beyond nitrate transport.J. Exp. Bot.71(15): 4373-4379.(Invited Review)[高被引论文]

Cover story.

117.Wang Y andChu C*(2020) S-Nitrosylation control of ROS and RNS homeostasis in plants: the switching function of catalase.Mol. Plant13: 946-948.

118.Zhang Z, Gao S, andChu C* (2020) Improvement of nutrient use efficiency in rice: Current toolbox and future perspectives.Theor. Appl. Genet.133(5): 1365-1384.(Invited Review)

119.Zhang Z, Hu B, and Chu C* (2020) Towards understanding the hierarchical nitrogen signalling network in plants.Curr. Opin. Plant Biol.55: 60-66.(Invited Review)

120.Hu B* andChu C* (2020) Nitrogen-phosphorus interplay: old story with molecular tale.New Phytol. 225(4): 1455-1460.(Invited Review)[高被引论文] [热点论文]

121.Zhang Z andChu C* (2020) Nitrogen-use divergence betweenindica andjaponica rice: Variation at nitrate assimilation.Mol. Plant13(1): 6-7.

122.Tong H andChu C* (2018) Functional specificities of brassinosteroid and potential utilization for crop improvement.Trends Plant Sci. 23(11): 1016-1028.(Invited Review) [高被引论文]

123.Gao S andChu C* (2018) Fine-tuning ofEui1: Breaking the bottleneck in hybrid rice seed production.Mol. Plant11(5): 643-644.

124.Li H, Hu B, andChu C* (2017) Nitrogen use efficiency in crops: lessons fromArabidopsisand rice.J. Exp. Bot.68(10): 2477-2488.(Invited Review) [高被引论文]

125.Tang J* andChu C* (2017) microRNAs in crops: fine-tuners for complex traits.Nat. Plants3: 17077.(Invited Review) [高被引论文]

126.Hu B* andChu C* (2017) Node-based transporter: Switching phosphorus distribution.Nat. Plants3: 17002.(Invited Commentary)

127.Tong H andChu C* (2016) Brassinosteroid regulates gibberellin synthesis to promote cell elongation in rice: Critical comments on Ross and Quittenden’s letter.Plant Cell28(4): 833-835.

128.Chu C* (2015) A new era for crop improvement: From model-guided rationale design to practical engineering.Mol. Plant 8(9): 1299-1301.

129.Liang C andChu C* (2015) Towards understanding abscisic acid-mediated leaf senescence.Sci. China Life Sci. 58(5): 506-508.(Invited Commentary)

130.Sun C, Chen D, Fang J, Wang P, Deng X*, andChu C* (2014) Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways.Protein Cell 5(12): 889-898.

131.Wang Y, Lin A, Loake GJ, andChu C* (2013) H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species.J. Integr. Plant Biol. 55(3): 202-208.

132.Wang Y, Loake GJ, andChu C* (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death.Front. Plant Sci. 4: 314.(Invited Review)

133.Tong H andChu C* (2012) Brassinosteroid signaling and application in rice.J. Genet. Genomics 39(1): 3-9.

134.Yang Z andChu C* (2011) Towards understanding plant response to heavy metal stress.In: Abiotic Stress in Plants - Mechanisms and Adaptations, Venkateswarlu B and Shanker AK (Ed.). p59-78.

135.Hu B andChu C* (2011) Phosphate starvation signaling in rice.Plant Sig. Behav.6(7): 927-929.

136.Wang Y, Chen C, Loake G,andChu C* (2010) Nitric oxide: Promoter or suppressor of programmed cell death?Protein Cell 1(2): 133-142.(Invited Review)

137.Tong H andChu C* (2009) Roles of DLT in fine modulation on brassinosteroid response in rice.Plant Sig. Behav.4 (5): 438 - 439.

138.Fang J andChu C* (2008) Abscisic acid and the pre-harvest sprouting in cereals.Plant Sig. Behav.3: 1046-1048.

III.合作发表文章

139.Wu J*, Song Y, Wan GY, Sun LQ, Wang JX, Wu HK, Wang SM, Mao CZ, Qin P, Li SG,Chu CC, Xiang CB* (2025) Natural variations atindica OsNLP4 enhance yield and nitrogen use efficiency.Nat. Commun.(accepted)

140.Xu F#, Yoshida H#,Chu C, Matsuoka M* and Sun J* (2025) Seed dormancy and germination in rice:Molecular regulatory mechanisms and breeding application. Mol. Plant. 18(6): 960-977.

141.Xie W, Xue X, Wang Y, Zhang G, Zhao J, Zhang H, Wang G, Li L, Wang Y, Shan W, Zhang Y, Chen Z, Chen X, Feng Z, Hu K, Sun M,Chu C, and Zuo S* (2025) Natural mutation in Stay-Green (OsSGR) confers enhanced resistance to rice sheath blight through elevating cytokinin content. Plant Biotechnol. J.23(3): 807-823.

142.Li C, Wu X, Wang P, Wang H, Wang L, Sun F, Lu C, Hao H, Chu C, and Jing HC* (2025) Genome-wide association study of image-based trait reveals the genetic architecture of dark-induced leaf senescence in rice.J. Exp. Bot. 76(2): 331-345.

143.Yao J, Chu Q, Guo X, Shao W, Shang N, Luo K, Li X, Chen H, Chen Q, Mo F, Zheng D, Xu F, Guo F, Zhu QH, Deng S,Chu C, Xu X, Liu H, Fan L(2024)Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination.Developmental Cell.59(17): 2320-2332.

144.Zhu J, Xue X, Ju R, Zhao J, Liu F, Han X, Yan Y, Wang Y, Feng Z, Lin D, Chen Z, Wang Y, Chen X,Chu C, Zuo S*, and Zhang Y.*(2024) Ectopic expression ofGastrodia antifungal protein in rice enhances resistance to rice sheath blight disease.Journal of Fungi. 10(1): 33.

145.Zhang X, Meng W, Liu D, Pan D, Yang Y, Chen Z, Ma X, Yin W, Niu M, Dong N, Liu J, Shen W, Liu Y, Lu Z, Chu C, Qian Q*, Zhao M*, Tong H.*(2024)Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition.Science.383(6687): eadk8838. 

Highlighted by Lyu J (2024) Spatially manipulating brassinosteroids for clustered growth.Nature Plants 10 (347): 347.

Featured by Zheng X, Ramaiah Venuprasad Ajay Kohli (2024)Unearthing old rice germplasm, illuminating a new way to improvement.JIPB.66(6): 1041-1043.

146.Yang Y, Chu C, Qian Q, Tong H.(2024)Leveraging Brassinosteroid Towards Next Green Revolution.Trends in Plant Science 29(1):86-98.

147.Xu Y, Qin F, Chu C, Varshney RK (2023) Abiotic stress tolerance: Genetics, genomics, and breeding.Crop Journal.11(2023), 969-974.

148.Hu Y, Zhao T, Guo Y, Wang M, Chu C, Hanson A, Kumar S, Lin R, Long W, Luo M, Ma JF, Miao Y, Nie S, Sheng Y, Shi W, Whelan  JM, Wu Q, Wu Z, Xie W, Yang Y, Zhao C, Lei L, Zhu Y-G, Zhang Q. 100 essential questions for the future of agriculture.Modern Agriculture. 1(1) (2023), 4-12.

149.Liu D, Zhang X, Li Q, Xiao Y, Zhang G, Yin W, Niu M, Meng W, Dong N, Liu J, Yang Y, Xie Q,Chu C, Tong H. The U-box Ubiquitin Ligase TUD1 Promotes Brassinosteroid-Induced GSK2 Degradation in Rice.Plant Communications.4(2)(2022), 100450.

150.Niu M#, Wang H#, Yin W, Meng W, Xiao Y, Li D, Zhang X, Dong N, Liu J, Yang Y, Zhang F,Chu C, and Tong H(2022)Rice DWARF AND LOW-TILLERING and the homeodomain protein OSH15 interact to regulate internode elongation via orchestrating brassinosteroid signaling and metabolism.Plant Cell.34(10): 3754-3772.

Featured by Michela Osnato (2022) Novel dwarfing alleles for the next green revolution: Mutations in DTL and OSH15 alter internode elongation and grain size in rice.Plant Cell. 34(10): 3499–3500.

151.You X, Zhang F, Liu Z, Wang M, Xu X, He F, Wang D, Wang R, Wang Y, Wang G,Chu C, Wang G-L, and Ning Y* (2022) The rice catalase OsCATC is degraded by the E3 ligase APIP6 to negatively regulate rice immunity.Plant Physiol.190(2):1095-1099.

152.Yin W, Li L, Yu Z, Zhang F, Liu D, Wu H, Niu M, Meng W, Zhang X, Dong N, Yang Y, Liu J, Liu Y, Zhang G, Xu J, Wang S, Chu C, Qian Q and Tong H(2022) The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal auto-binding of OsBSK2.J Integr. Plant Biol.64(8): 1614-1630.

153.Gong L, Liao S, Duan W, Liu Y, Zhu D, Zhou X, Xue B, Chu C, Liang YK (2022) OsCPL3 is involved in brassinosteroid signaling by regulating OsGSK2 stability.J Integr. Plant Biol.64(8): 1560-1574.

154.SunC*, Liu S, He C, Zhong C, Liu H,Luo X, Li K, Zhang K, Wang Q, Chen C, Tang Y, Yang B,Chen X, Xu P, Zou T, Li S, Qin P, Wang P,Chu C, Deng X* (2022)Crosstalk between the circadian clock and histone methylation.Intl.J. Mol. Sci.23(12): 6465.

155.Liu C, Mao B, Yuan D,Chu C, Duan M (2022) Salt tolerance in rice: physiological responses and molecular mechanisms.Crop J.10(1): 13-25.[高被引论文]

156.Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z,Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, and Zhang Q (2022) From Green Super Rice to green agriculture: reaping the promise of functional genomics research.Mol. Plant. 15(1): 9-26. [高被引论文]

157.Wang X, Cheng R, Xu D, Huang R, Li H, Jin L, Wu Y, Tang J, Sun C, Peng D,Chu C, Guo X (2023)Direct association of Mg1 with a protease inhibitor confers resistance to rice root-knot nematode.Nat Commun. 14(1): 3354.

158.Chen R#, Deng Y#, Ding Y#, Guo J#, Qiu J#, Wang B#, Wang CS#, Xie Y#, Zhang Z#, Chen J, Chen L,Chu C, He G, He Z, Huang X*, Xing Y, Yang S, Xie D*, Liu Y*, Li J*(2022) Rice functional genomics: Decades' efforts and roads ahead.Sci. China – Life Sci. 65(1): 33-92. [高被引论文]

159.Gao F, Zhang H, Zhang W, Wang N, Zhang S,Chu C, Liu C (2021) Engineering of the cytosolic form of phosphoglucose isomerase into chloroplasts improves plant photosynthesis and biomass. New Phytol.231(1): 315-325.

160.Cao S*, Luo X, Xu D, Tian X, Song J, Xia X,Chu C, He Z* (2021) Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice and temperate cereals.New Phytol. 230: 1731-1745. [高被引论文]

161.Yu H*#, Lin T#, Meng X#, Du H#, Zhang J#, Liu G, Chen M, Jing Y, Kou L, Li X, Gao Q, Liang Y, Liu X, Fan Z, Liang Y, Cheng Z, Chen M, Tian Z, Wang Y,Chu C, Zuo J, Wan J, Qian Q, Han B, Zuccolo A, Wing RA, Gao C*, Liang C*, Li J* (2021) A route to de novo domestication of wild allotetraploid rice.Cell.184(5): 1156-1170. [高被引论文]

Highlighted by Xin-Guang Zhu and Jian-Kang Zhu (2021).Precision genome editing heralds rapidde novo domestication for new crops.Cell. 184(5), 1133-1134.

Highlighted by Diane R. Wang (2021) Sowing the seeds of multi-genome rice.Nature. 591: 537-538.

Commented by Guo T and Lin HX (2021) Creating future crops: a revolution for sustainable agriculture.Journal of Genetics and Genomics. 48(2): 97-101.

热点评述:谭禄宾,孙传清(2021)四倍体野生稻快速驯化:启动人类新农业文明.植物学报.56 (2): 1–4.

热点追踪:许操(2021)01:异源四倍体野生稻从头驯化创造全新作物.遗传. 43(3):199-202.

选中国科协生命科学学会联合体评选的2021年度“中国生命科学十大进展”和2021年度两院院士评选“中国十大科技进展新闻”。

Selected by F1000Prime byCristobal Uauy (Exceptional).

162.Xiao Y, Zhang J, Yu G, Lu X, Mei W, Deng H, Zhang G, Cheng G,Chu C, Tong H*, and Tang W* (2020)Endoplasmic reticulum-localized PURINE PERMEASE1 regulates plant height and grain weight by modulating cytokinin distribution in rice. Front. Plant Sci. 11: 618560.

163.Liu X#, Hu Q#, Yan J#, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D,Chu C, Smith SM, Chu J*, Wang Y, Li J, Wang B* (2020) ζ-Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid.Mol. Plant.13:1784-1801.

164.Wu J, Zhang Z-S, Xia J-Q; Alfatih A, Song Y, Huang Y-J, Wan G-Y, Sun L-Q, Tang H, Liu Y, Wang S-M, Zhu Q-S, Qin P, Wang Y, Li S; Mao C, Zhang G-Q,Chu C, Yu L-H, and Xiang C (2021) Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency.Plant Biotechnol. J.19(3): 448-461.

165.He Y#, Hong G#, Zhang H, Tan X, Li L, Kong Y, Sang T, Xie K, Li J, Yan F, Wang P, Tong H,Chu C, Chen J* and Sun Z*(2020) OsGSK2 integrates brassinosteroids and jasmonic acid signaling by interacting with OsJAZ4.Plant Cell.32(9): 2806-2822.

Featured by William Hughes (2020)OsGSK2 integrates jasmonic acid and brassinosteroid signaling in rice.Plant Cell 32(9): 2669-2670.

166.Li X#, Chen Z#, Zhang G#, Lu H#, Qin P, Qi M, Yu Y, Gao Q, Jiao B, Zhao X, Gao Q, Wang H, Wu Y, Ma J, Zhang Y, Wang Y, Deng L, Yao S, Cheng Z, Yu D, Zhu L, Xue Y,Chu C, Li A*, Li S*, Liang C* (2020)Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions.Sci. China – Life Sci.63(11): 1688-1702.

167.Yin W, Xiao Y, Niu M, Meng W, Li L, Zhang X, Liu D, Zhang G, Qian Y, Sun Z, Huang R, Wang S, Liu C-M,Chu C, and Tong H* (2020)ARGONAUTE2 enhances grain length and salt tolerance by activatingBIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell.32(7): 2292-2306. [高被引论文]

168.Shi Y, Phan H, Liu Y, Cao S, Zhang Z,Chu C, and Schlappi MR (2020) The glycosyltransferase geneOsUGT90A1 helps protect plasma membranes during chilling stress in rice.J. Exp. Bot. 71(9): 2723-2739.

169.Cao S#,*, Luo X#, Xue L#, Gao C, Wang D, Holt III BF, Lin H,Chu C, Xia X (2020) The florigen interactor BdES43 represses flowering in the model temperate grassBrachypodium distachyon.Plant J.102: 262-275.

170.Meng Y#, Wang Z#, Wang Y, Wang C, Zhu B, Liu H, Ji W, Wen J,Chu C, Tadege M, Niu L, and Lin H* (2019) The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula.Plant Cell31(11): 2751-2767.

Featured by Philip Carella (2018) Mellowed Yellow: WHITE PETAL1 Regulates Carotenoid Accumulation in Medicago Petals.Plant Cell 31(11): 2556-2557.

171.Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S,Chu C, Hu S, Song X*, Cao X* (2019) Fine-tuning of miR528 accumulation modulates flowering time in rice.Mol. Plant 12(8): 1103-1113.

Cover Story.

Featured inMolecular Plant by Chengjie Chen, Yuanlong Liu and Rui Xia (2019) Jack of Many Trades: The Multifaceted Role of miR528 in Monocots.MolecularPlant. 12(8): 1044-1046.

172.Zhang LM#, Leng CY#, Luo H#, Wu XY#, Liu ZQ#, Zhang YM, Zhang H, Xia Y, Shang L, Liu CM, Hao D, Zhou Y,Chu C, Cai HW*, Jing HC* (2018) Sweet sorghum originated through selection ofDry, a plant specific NAC transcription factor gene.Plant Cell 30(10): 2286-2307.

Featured inPlantCellby Emily Breeze (2018)Sweet and Juicy: Identification and Origins of the Dry Alleles in Sorghum.PlantCell. 30(10): 2234-2235.

173.Kopriva S* andChu C (2018) Are weready to improve phosphorus homeostasis in rice?J. Exp. Bot.69(15): 3515-3522.(Expert view).

174.Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau MT,Chu C, Li L (2018) Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J. Integr. Plant Biol.60(4): 323-340.

175.Hu ZJ#, Lu SJ#, Wang MJ#, He H, Sun L, Wang H, Liu XH, Jiang L, Sun JL, Xin XY, Kong W,Chu C, Xue HW, Yang JS, Luo X*, Liu JX* (2018)A novel QTLqTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice.Mol. Plant11(5): 736-749. [高被引论文]

176.Guo Q#, Wu F, Pang S, Zhao X, Chen L, Liu J, Xue B, Xu G, Li L, Jing H, andChu C (2018)Crop 3D: a LiDAR based platform for 3D high-throughput crop phenotyping.Sci. China Life Sci.61(3): 328-339.

177.Qu M, Zheng G, Hamdani S, Essmine J, Song Q, Wang H,Chu C, Sirault X, Zhu XG (2017) Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity panel.Plant Physiol.175(1): 248-258.

178.Lu Y, Ye X, Guo R, Huang J, Li G, Tang J, Tan L, Zhu JK,Chu C, and Qian Y (2017) Genome-wide Targeted Mutagenesis in Rice Using CRISPR/Cas9 System.Mol. Plant10(9): 1242-1245.

Cover story.

Featured by Ning Yang, Rongchen Wang, Yunde Zhao (2017) Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology.Molecular Plant. 10(9): 1141-1143.

179.Schläppi M, Jackson A, Wang A,Chu C, Eizenga G, Shi Y, Shimoyama N, Boykin DL (2017) Assessment of five cold tolerance traits and GWAS mapping in rice using the USDA mini-core collection.Front. Plant Sci. 8: 957.

180.Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Chu J,Chu C, Li Z, Yin Y (2017) Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response.Plant Cell29(6): 1425-1439.

181.Wang M#, Wu HJ, Fang J,Chu C, Wang XJ# (2017) A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160.Sci. Bull. 62: 470-475.

Cover Story.

182.Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan T, Jiang H, Guo H, Lin HY, Li L, Wang Y, Tong H, Zhang M,Chu C, Li Z, Aluru M, Aluru S, Schnable P, and Yin Y (2017) RD26 mediates crosstalk between drought and brassinosteriod signalling pathways.Nat. Commun. 8: 14573. [高被引论文]

183.Wu J, Yang R, Yang Z, Zhao S, Yao S, Wang Y, Li P, Song X, Jin L, Zhou T, Xie L, Zhou X,Chu C, Qi Y, Cao X, and Li Y (2017) ROS accumulation and antiviral defence control by microRNA528 in rice.Nat. Plants3: 16203.[高被引论文]

184.Qu M, Hamdani S, Li W, Wang S, Tang J, Chen Z, Song Q, Li M, Zhao H, Chang T,Chu C, and Zhu XG (2016) Rapid stamatal response to fluctuating light: an under -explored mechanism to improve drought tolerance in rice.Funct. Plant Biol. 43(8): 727-738. 

185.Song Q,Chu C, Parry M, and Zhu XG (2016) Genetics-based dynamic systems model of canopy photosynthesis: The key to improve light and resource use efficiencies for crops.Food Energy Secur. 5(1): 18-25.

186.Yin CC, Ma B, Collinge D, Pogson B, He SJ, Xiong Q, Duan KX, Chen H, Yang C, Lu X, Wang YQ, Zhang WK,Chu CC, Sun XH, Fang S, Chu JF, Lu TG, Chen SY, and Zhang JS (2015) Differential regulation of ethylene responses in roots and coleoptiles by a carotenoid isomerase MHZ5-mediated abscisic acid pathway in rice.Plant Cell 27(4): 1061-1081.

187.Li X, Liu H, Wang M, Liu H, Tian X, Zhou W, Lv T, Wang Z,Chu C, Fang J and Bu Q (2015) Combinations of four heading date genes determine rice adaptability to Heilongjiang province, northern limit of China.J. Integr. Plant Biol. 57(8): 698-707.

188.Chen J#, Liu X#, Wang C#, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q,Chu CC, Peng XX,and Zheng HL* (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings.J. Hazard. Mater. 297: 173-182.

189.Hamdani S, Qu M, Xin C,Chu C, Govindjee G, and Zhu X (2015) Variations of photosynthetic parameters in Chinese elite rice revealed by simultaneous measurements of Chlorophylla fluorescence induction and 820nm transmission signal.J. Plant Physiol. 177: 128-138.

190.Su L, Li A, Li H,Chu C, and Qiu JL (2013) Direct modulation of protein level inArabidopsis.Mol. Plant6(5): 1711-1714.

191.Fan Y, Du K, Gao Y, Kong Y,Chu C, Sokolov V, and Wang Y(2013) Transformation of LTP gene intoBrassica napus to enhance its resistance toSclerotinia sclerotiorum.Russ. J. Genet.49(4): 380-387.

192.Wang L, Song X, Gu L, Li X, Cao S,Chu C, Cui X, Chen X, and Cao X (2013) NOT2 proteins promote Pol II-dependent transcription and interact with multiple miRNA biogenesis factors inArabidopsis.Plant Cell 25(2): 715-727.

193.Song X, Wang D, Ma L, Chen Z, Li P, Cui X, Liu C, Cao S,Chu C, Tao Y, and Cao X (2012) Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development.Plant J.71(3): 378-389.

194.Song X, Li P, Zhai J, Zhou M, Ma L, Liu B, Jeong DH, Nakano M, Cao S, Liu C,Chu C, Wang XJ, Green PJ, Meyers BC, and Cao X (2012) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis.Plant J.69(3): 462-474. [高被引论文]

195.Wu H, Chen C, Du J, Liu H, Yan C, Zhang Y, He Y, Wang Y,Chu C, Feng Z, Li J, and Ling HQ (2012) Co-overexpressionFIT withAtbHLH38orAtbHLH39 in Arabidopsis enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots.Plant Physiol. 158(2): 790-800.

196.Shen HLiu CZhang YMeng XZhou XChu CandWang X(2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice.Plant Mol. Biol. 80(3): 241-253.

197.Jin Y#, Luo Q#, Tong H#, Wang A, Cheng Z, Tang J, Li D, Zhao X, Li X, Wan J,Chu C,and Zhu L (2011) An AT-hook gene is required for palea formation and floral organ number control in rice.Dev. Biol. 359: 277-288.

198.Feng J, Cao L, Li J, Duan C, Luo X, Le N, Wei H, Liang S,Chu C, Pan Q, and Tang JL (2011) Involvement of OsNPR1/NH1 in rice basal resistance to rice blast fungusMagnaporthe oryzae.Eur. J. Plant Pathol. 131(2): 221-235.

199.Meng X, Qin J, Wang L, Duan G, Sun G, Wu H,Chu C, Ling HQ, Rosen B, and Zhu Y (2011) Arsenic biotransformation and volatilization in transgenic rice.New Phytol. 191: 49-56.

200.Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S,Chu C, and Xie Q (2011)OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice.Plant Mol. Biol.76: 145-156.

201.Wu XZuo SChen ZZhang YZhu JMa NTang J,Chu CandPan X(2011) Fine mapping ofqSTV11TQ, a major gene conferring resistance to rice stripe disease.Theor. Appl. Genet. 122(5): 915-923.

202.Qin X, Liu Y, Mao S, Li T, Wu H,Chu C,and Wang Y (2011) Genetic transformation of lipid transfer protein encoding gene inPhalaenopsis amabilis to enhance cold resistance.Euphytica177: 33-43.

203.Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X,Chu C, Xie Q, Jiang X,and Zhu L (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice.J. Integr. Plant Biol. 52(7): 626-638.

204.Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y,Chu C, Guo H, and Xie Q (2010) Up-regulation of LSB1/GDU3 impacts geminivirus infection by activating the salicylic acid pathway.Plant J. 62(1): 12-23.

205.Spadaro D, Yun BW, Spoel SH,Chu C, Wang Y,and Loake G (2010) The redox switch: dynamic regulation of protein function by cysteine modifications.Physiol. Plant. 138(4): 360-371.

206.Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G,Chu C, Li J, and Fu X (2009) Natural variation at theDEP1 locus enhances grain yield in rice.Nat. Genet. 41(4): 494-497.

Selected for F1000 Prime. doi: 10.3410/f.1157839.619084. doi: 10.3410/f.1157839.622046.

207.Wang Y, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang F, Xie Z, Pallas JA,Chu C,and Loake G (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity.J. Biol. Chem.284: 2131-2137.

208.Zhang Y, Li Y, Gao T, Zhu H, Wang D, Zhang H, Ning Y, Liu L, Wu Y,Chu C, Guo H,and Xie Q (2008)Arabidopsis SDIR1 enhances drought tolerance in crop plants.Biosci. Biotech. Biochem.72: 2251-2254.

209.Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y,Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, and Li C (2008) Mutation of the riceNARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport.Plant Physiol. 147: 1947-1959.

210.Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K,Chu C, Wang Y, and Loake GJ(2008)Nitric oxide function and signalling in plant disease resistance.J. Exp. Bot.59:147-154.

211.Dong H, Deng Y, Mu J, Lu Q, Wang Y, Xu Y,Chu C, Chong K, Lu C,and Zuo J (2007)TheArabidopsisSpontaneous Cell Death1gene, encoding aζ-carotene desaturase essential for carotenoid biosynthesis, is involved in photoprotection, chloroplast development and retrograde signaling.Cell Res. 17: 458-470.

212.Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X,Chu C, Deng XW, Xue Y,and Cao X (2007)Oryza sativaDicer-like4 reveals a key role for small interfering RNA silencing in plant development.Plant Cell19: 2705-2718.

213.Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zheng D, Gu M,Chu C,and Cheng Z (2006)GOLD HULL AND INTERNODE2(GH2)encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase (CAD) inOryza sativa.Plant Physiol. 140: 972-983.

214.Xiong G, Hu X, Jiao Y, Yu Y,Chu C, Li J, Qian Q, and Wang Y (2006)LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice.Cell Res.16: 267-276.

215.Zhou H, He S, Cao Y, Chen T, Du B,Chu C, Zhang J, and Chen S (2006)OsGLU1, A putative membrane-bound endo-1,4--D-glucanase from rice, affects plant internode elongation.Plant Mol. Biol. 60: 137-151.

216.Liu B, Li P, Li X, Liu C, Cao S,Chu C,and Cao X (2005) Loss of function ofOsDCL1 affects microRNA accumulation and causes developmental defects in rice.Plant Physiol.139: 296-305.

217.Junker BH,Chu C, Sonnewald U, Willmitzer L,and Fernie AR(2003) In plants the alc gene expression system responds more rapidly following induction with acetaldehyde than with ethanol.FEBS Lett. 535 (1-3): 136-140.

218.Sweetman JP,Chu C, Qu N, Greenland AJ, Sonnewald U, and Jepson I (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species.Plant Physiol. 129: 943-948.

学院简介-
本科生培养-
师资队伍-
学生工作

版权所有©华南农业大学农学院 备案编号:粤ICP备05008874号

管理登录