姓 名:张艳霞 | ||||
技术职称:首聘教授 | ||||
学位学历:博士研究生 | ||||
导师类别: | ||||
邮 箱:yanxia.zhang@scau.edu.cn | ||||
个人主页:https://orcid.org/0000-0002-0577-5142 |
______________________________________________________________________________________________________________________________________________________________________________________________________________
研究方向(Research):
盐胁迫是危害我国及世界粮食产量的主要非生物胁迫之一。大多数的主粮作物如水稻、玉米、土豆及大豆等对盐胁迫都十分敏感,植株生长发育及产量受到其严重影响。根系是植物吸收水分及氮、磷等营养元素的首要器官,也是植物应对盐害等复杂土壤环境的第一道防线。本实验室聚焦植物根系,主要以水稻等作物为材料,利用遗传学、分子生物学、发育生物学及计算生物学等手段方法,研究植物根系生长发育响应盐胁迫等胁迫因子的分子机制。实验室目前主要的研究方向为:
1. 植物根系可塑性生长响应盐害等胁迫条件的分子机制;
2. 植物激素独脚金内酯参与根系生长及逆境应答的分子机制。
Environmental Control of Crop Root System Biology
Soil salinity is one of the major abiotic factors negatively affecting global crop production. Major crop species such as rice, maize, potato and soybean are very sensitive to salinity stress. Optimal root growth is crucial for plants to absorb water and nutrients to achieve high yields in the ever-changing climate. Research in Crop Root Biology Lab led by Dr. Yanxia Zhang in College of Agriculture, SCAU focuses on understanding how plants thrive under stress conditions through their root systems. We aim to understand the following questions to contribute to the field: (1) the molecular mechanisms of root system growth regulation in response to salinity; (2) how phytohormones, in particular strigolactones, mediate stress response and root growth. We study major crops from monocotyledonous Oryza species to dicotyledonous Solanaceae to provide molecular knowledge to aid crop engineering for stress resilience.
教育经历(Education):
学士(B.sc) 生物科学 2006.6 佳木斯大学
硕士(M.sc) 植物学 2009.1 北京林业大学
博士(Ph.D) 植物生理学 2014.9 Wageningen University& Research
工作经历( Positions and Roles):
2014.9 - 2016.7 博士后(postdoc) Wageningen University& Research
2016.8 - 2018.2 博士后 (postdoc) University of Amsterdam
2018.3 - 2022.11 博士后研究员(researcher) Wageningen University& Research
2018 - 今 博士生导师(PhD co-promotor) Wageningen University& Research
2023.1 - 今 首聘教授 华南农业大学农学院
学术服务(Peer Review Activities):
Nature plants, PNAS, Plant physiology, Plant Molecular Biology等期刊审稿人
代表性论文著作(Selected publications):
# Equal contribution; * correspondence author
1. Li H, Duijts K, Pasini C, van Santen E. J, Lamers J, de Zeeuw T, Verstappen F, Wang N, Zeeman C. S, Santelia D, Zhang Y*, Testerink C* (2023) Effective root responses to salinity stress include maintained cell expansion and carbon allocation. New Phytologist (accepted, in press). DOI: 10.1111/nph.18873
2. Li H, Testerink C* Zhang Y* (2021) How roots and shoots communicate through stressful times. Trends in Plant Science, 26 (9), 940-952
3. Zou Y, Zhang Y, Testerink C (2021) Root dynamic growth strategies in response to salinity. Plant, Cell & Environment, 45(3):695-704
4. Van Zelm E#, Zhang Y#, Testerink C. (2020) Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433
5. Zhang Y, Cheng X, Wang Y, Díez-Simón C, Flokova K, Bimbo A, Bouwmeester HJ, Ruyter-Spira C (2018) The tomato MAX1 homolog, SlMAX1, is involved in the biosynthesis of tomato strigolactones from carlactone. New Phytologist, 219, 297–309
6. Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 212, 954-963
7. Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Current Opinion in Biotechnology, 32, 136-142
8. Zhang Y, van Dijk ADJ, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyse distinct steps in strigolactone biosynthesis. Nature Chemical Biology,10, 1028-1033
9. Cardoso C#, Zhang Y#, Jamil M#, Hepworth J#, Charnikhova T, Dimkpa SON, Meharg C, Wright MH, Liu JW, Meng XB, Wang YH, Li JY, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proceedings of the National Academy of Sciences of the United States of America, 111: 2379
10. Liu Q#, Zhang Y#, Matusova R, Charnikhova T, Amini M, Jamil M, Fernandez-Aparicio M, Huang K, Timko MP, Westwood JH, Ruyter-Spira C, van der Krol S. Bouwmeester HJ (2014) Striga hermonthica MAX2 restores branching but not the Very Low Fluence Response in the Arabidopsis thaliana max2 mutant. New Phytologist, 202: 531-541
11. Zhang HT#, Hedhili S#, Montiel G#, Zhang Y#, Chatel G, Pre M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus Roseus. The Plant Journal, 67: 61–71
承担科研项目(Grants):
Rooting in salt: gene regulatory networks that guide root developmental plasticity, 荷兰科学组织(NWO) Open Competition Domain Science Klein 项目(OCENW.KLEIN.421),350k€,2021-2025,在研,项目原创撰写者,参与主持
Global analysis of the salt stress-induced transcriptome and RNA degradome in Arabidopsis roots, 荷兰健康研究与发展组织(ZonMW)青年项目(435004012),29.99k€,2018-2019,结题,主持